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The performance of a quantum computation system is investigated with qubits represented by magnetic
impurities in coupled quantum dots filled with two electrons. Magnetic impurities are electrically manipulated
by electrons. The dominant noise source is the electron-mediated indirect coupling between magnetic impuri-
ties and host spin bath. As a result of the electron-mediated coupling, both noise properties and the time needed
for elementary gate operations, depend on controllable system parameters, such as size and geometry of the
quantum dot, and external electric and magnetic fields. We find that the maximum number of quantum opera-
tions per coherence time for magnetic impurities increases as electron spin singlet triplet energy gap decreases.
The advantage of magnetic impurities over electrons for weak coupling and large magnetic fields will be
illustrated.
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Semiconductor nanostructures1 are a promising host ma-
terial for the realization of quantum computers2 because of
the well-developed production technologies and because of
the potential for scaling to multiqubit systems. The greatest
bottleneck for realizing semiconductor quantum devices is
the high degree of noise present in the host material.

Recently substantial progress has been made in the ex-
perimental demonstration of electron spin coded qubits in
lateral double quantum dots �QDs�,3 first theoretically pro-
posed by Loss and DiVincenzo.4 This system exhibits prom-
ising properties for quantum information processing, as it
can be controlled electrically like charge qubits, however
offers the longer decoherence times of spin qubits. Neverthe-
less, dephasing in spin coded qubits due to nuclear hyperfine
interaction still presents the major hurdle for realizing a scal-
able quantum computer.5,6

Another seminal idea of realizing quantum computation
in semiconductors is by the use of a hybrid qubit, first pro-
posed by Kane in a 31P-doped silicon host.2,7,8 In silicon, 31P
is a positive dopant that is transformed into a positively
charged nucleus and a loosely bound valence electron.
Whereas, the qubit is represented by the nuclear spin of 31P,
electric gate operations on the electron are used for manipu-
lation and diagnostics of the qubit. The technological imple-
mentation of this system is more challenging, mostly as a
result of the significantly smaller dimensions of the qubits.

We suggest and analyze here a qubit that is a mixture of
the spin coded4 and of the hybrid qubits7,8 discussed above.
The proposed device consists of a QD containing electrons
and a neutral dopant acting as a magnetic impurity �MI�.
Similar to the original hybrid qubit, the MI represents the
qubit, and the electrons are used for manipulating the qubit.
The use of MIs alone for spin-based quantum devices and its
noise spectroscopy has been investigated recently.9–11 Here,
we confine our analysis to MIs with zero nuclear spin �e.g.,
56Fe / 160Gd doped in II-VI/IV-VI materials� to exclude cou-
pling between spins of the electron and nucleus of the MI. As
shown in Fig. 1, the MI is localized in space and its direct
interaction with the host spin bath is negligible. Therefore,

the decoherence of the qubit is determined by the electron-
mediated coupling of the MI to the spin bath.

Our configuration has two advantages over the original
qubit systems. First, it allows greater design flexibility, in
particular, with regard to the size of the confining potential.
This will facilitate the actual technological realization of a
hybrid qubit. Second, MI-electron coupling and electron-
mediated MI-spin bath coupling show particular dependence
on the electron spin singlet triplet energy gap �e, that allows
forming stable qubit over a range of QD confining potentials,
and the external electric and magnetic fields. This system
corresponds to the electron spin coded qubit system investi-
gated in Ref. 4 and makes a comparison possible. The per-
formance of our quantum computing setup is measured by
the maximum number of operations Ni=�i /Ti with i=e ,m for
electrons and MI qubits, respectively. Here, � is the coher-
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FIG. 1. �Color online� Schematics of two spin qubit unit in a

DQD considered here. Each spin qubit is represented by a MI.
Interaction between qubits is mediated by the two electrons; the
electron MI coupling coefficient is denoted by Jem. As interaction of
MIs with nuclear spin bath is negligible, the dominant noise source
is electron mediated coupling between MIs and nuclear spin bath;
the electron nuclear spin bath coupling coefficient is given by A.
The interaction strength between the MIs and between MI and
nuclear spin bath depends on the singlet-triplet electron energy gap
�e, which can be controlled by external electric gate voltage �Vg�,
magnetic field �B�, and shape/size of the DQD. This allows active
noise engineering and optimization of the two qubit system.
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ence time and T is the time required for an elementary gate
operation. In this work we illustrate that the quantum perfor-
mance of the spin coded qubit based on MIs increases by the
external electric and magnetic fields. This is in contrast to the
electron spin coded qubit that its performance is suppressed
rapidly by the interdot coupling.

We represent the QD system by the Hamiltonian
H=He+Hm+Hn+Hin, which contains electrons �He�, MIs
�Hm�, host semiconductor nuclei �Hn�, and their interactions
�Hin�. In our model we consider e-MI and e-n interaction,
i.e., Hin=Hem+Hen. The direct interaction between MI elec-
trons and semiconductor host nuclei are neglected, as d and f
electrons are highly localized in space. Further, our analysis
is confined to MIs with zero nuclear magnetic moment,
which do not interact with the MI electrons. As a result,
dipole-dipole interaction between the nuclear spins of MI
and host nuclei has no influence on our system.

Electrons confined in quasi-two-dimensional quantum
dots in a uniform perpendicular magnetic field can be de-
scribed by the effective mass Hamiltonian

He = �
i=1

N

�Ti + Zi� +
e2

2�
�
i�j

1

�r�i − r� j�
, �1�

where T=1 / �2m����� / i��� + �e /c�A�r���2+V�r�� is the single
electron Hamiltonian in an external magnetic field B� =Bẑ,
perpendicular to the plane of the confining potential. Here
�r��= �x ,y ,z� describes the electron position, V�r�� denotes the
quantum dots confining potential, and A�r��= �1 /2�B� �r� is the
vector potential. Further, m� is the conduction-electron effec-
tive mass, −e is the electron charge, and � is the host semi-
conductor dielectric constant. Finally, Zi= �1 /2�ge�bSziB de-
termines the Zeeman spin splitting, ge is the electron g factor
in host semiconductor, �b refers to the Bohr magneton, and
Szi represents the z-Pauli matrix of electron i.

The single particle eigenvalues �	
�� and eigenvectors
��
�� are calculated by discretizing T+Z in real space, and
diagonalizing the resulting matrix. By using the creation �an-
nihilation� operators c
�

† �c
�� for an electron in a noninter-
acting single-particle state �
 ,��, the Hamiltonian of an in-
teracting system in second quantization can be written as

He = �



�
�

	
�c
�
† c
�

+
1

2 �


��

�
���

V
�,
��,���,��c
�
† c
��

† c���c��, �2�

where the first term represents the single-particle
Hamiltonian and V
�,
��,���,��

=�dr��dr�� �
�
� �r���
��

� �r�� � e2

��r�−r�� �
�����r�� �����r��, is the two-

body Coulomb matrix element.
The Hamiltonian for the MIs accounts for MI-MI direct

exchange interaction and MI-Zeeman coupling

Hm = �
j,j�=1

M

Jjj�M
�

j · M� j� + �
j

gm�bMzjB , �3�

where Jjj� is the direct MI-MI antiferromagnetic coupling,
gm is the MI g factor, and Mzj is the z component of the MI
spin operator.

The nuclear-nuclear direct dipole interaction in the host
semiconductor is neglected. The nuclear Hamiltonian is
given by the Zeeman coupling term

Hn = �
l=1

L

gn�bIzlB , �4�

where gn is the nuclear g factor and Izl is the z component of
nuclear spin operator.

The e-MI exchange interaction is modeled by

Hem = − Jem�
i,j

S� i · M� j��ri − R j� �5�

with Jem the exchange coupling between electron spin S� i at ri

and impurity spin M� j located at the position R j.
10 In second

quantization it can be written as

Hem = − �




�
I

J

�R j�
2

��Mzj�c
↑
† c
↑ − c
↓

† c
↓� + Mj
+c
↓

† c
↑ + Mj
−c
↑

† c
↓� ,

�6�

where J

�R j�=Jem�

��R j��
�R j�. Similarly, we describe the

electron-nuclear spin bath hyperfine interaction by

Hen = �
i,l

ÃlS� i · I�l��ri − Rl� �7�

with Ãl= �16� /3��b�l / Il the isotropic �Fermi contact� part of
the electron-nucleus hyperfine interaction.6,12,13 Here �l and
Rl are magnetic moment, and position of the lth nucleus and
sum goes over all nucleus in the lattice. In second quantiza-
tion it can be written as

Hen = − �




�
l

A

�Rl�
2

��Izl�c
↑
† c
↑ − c
↓

† c
↓� + Il
+c
↓

† c
↑ + Il
−c
↑

† c
↓� , �8�

where A

�Rl�= Ãl�

��Rl��
�Rl�. Finally

Hint = −
1

2 �


�

�
���

Q� 

� · ����c
�
† c
���, �9�

where Q� 

�=�IJ

��R� j�M� j −�nA

��R� l�I�l.
From the total Hamiltonian H an effective Hamiltonian is

obtained by tracing over the degrees of freedom of the elec-
tron wave function and by taking the interaction term Hin
into account to second order of perturbation theory, which
yields
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Heff = Hm + Hn + �
x

�	�x�Hin��g��2

Eg − Ex
. �10�

Here we limit our calculation to a two electron and two MI
system in a double quantum dot �DQD� as shown in Fig. 1.
The two-electron wave function is confined to the Hilbert
subspace constructed from the bonding and antibonding
�highest occupied molecular orbital, lowest unoccupied mo-
lecular orbital� one-electron orbitals of the DQD, ��. Below
the magnetic field corresponding to spin singlet-triplet tran-
sition, this results in six basis functions of two-electron, a
spin singlet �S0� ground state �g that can be expressed as
superposition of �+�r�1��+�r�2��S0� and �−�r�1��−�r�2��S0� with
binding energy Eg, and five excited states �x with energy Ex,
consisting of three degenerate first excited triplet states, and
two higher excited singlet states.15

Calculating the matrix elements in Eq. �10� yields the
effective Hamiltonian

Heff = Hm + Hn + Hmm + Hmn, �11�

where Hmm=� j,j�� j j�M
�

j ·M� j� is the electron mediated
�Ruderman-Kittel-Kasuya-Yosida �RKKY�-type14� interac-
tion between the MIs, and Hmn=� j,l� jlI�l ·M� j is the electron
mediated interaction between MIs and nuclear spin bath; the
electron mediated interaction between host nuclear spins Hnn

is neglected. Here, � j j�=−�2Jem
2 U�R� j ,R� j�� / �2�e� and � j,l

=�2ÃJemU�R� j ,R� l� /�e. Further, �=
+−
−, where 
+, and 
−
are the coefficients of the two-electrons ground state that is
expressed as linear combination of bonding-antibonding in
two-level model �g�r�1 ,r�2�= �
+�+�r�1��+�r�2�
+
−�−�r�1��−�r�2���S0�, �e is the two-electron singlet-triplet

splitting, Ã=1 /L�l=1
L Ãl, and U�R� j ,R� ��

=�+�R� j��−�R� j��+�R� ���−�R� �� with �= j� , l.
In the following we use the effective Hamiltonian 11 to

calculate the decoherence time of the DQD with two MIs and
two electrons, where each MI represents a spin qubit. The
result is compared to a two qubit system realized by two
electrons in a DQD. The calculation is performed by using
the quasistatic bath approximation,13,15,16 where the host
nuclear spins are approximated by a random magnetic field
B� n with a Gaussian distribution. In this limit the two-electron
and two-MI nuclear bath Hamiltonian are given by

Hkn = �
i=1

2

gk�bB� n · K� i, �12�

where k=e ,m and K� =S� ,M� for electrons and MI,
respectively. The coherence time is obtained by solving the
equation of motion for K� 1 and K� 2 with initial state
�↑↓� and by averaging over the Gaussian magnetic
field distribution. From that we obtain 	Be�= 	Bm�=0,

	Be
2�=1 / �ge�b�2�lIl�Il+1�Ãl

2��+�Rl��4, and 	Bm
2 �

=1 / �gm�b�2�lIl�Il+1�Ãl
2��+�Rl��−�Rl��2. From there an

effective Zeeman splitting �̃k= �2	Bk
2� /3�1/2 is calculated

hence �k=� / �gk�b�̃k�. Assuming Il=1 /2 we find the spin
relaxation time �e=� / �2Ae� and �m=C� / �2Am�. Here

Ae= ��lÃl
2��+�Rl��4�1/2, Am= ��lÃl

2��+�Rl��−�Rl��2�1/2, and
C=�e / ��2Jem��R� 1 ,R� 2�� is the RKKY correction to the MI
coherence time, stems from the MI-nuclear-spin interaction
mediated by electrons. Here ��R� 1 ,R� 2�=� j=1

2 ��+�R� j��−�R� j��
describes the spatial dependence of the e-MI exchange inter-
action, a parameter that depends on the electron envelop
wave function at the MI positions R� j. Note that in the limit of
zero interdot tunneling, Ae=Am. The ratio of MI and electron
coherence times can be calculated as

�m

�e
=

�e

�2Jem��R� 1,R� 2�

Ae

Am
. �13�

The performance of a quantum computing setup is given
by the maximum number of operations Ni=�i /Ti with
i=e ,m for electrons and MI qubits, respectively. Here, � is
the coherence time and T is the time required for the elemen-
tary gate operations. Our system is compared to the original
proposal in Ref. 4, where an XOR gate control in a two-
electron DQD is analyzed. The elementary gate operations
needed for the XOR gate are: �i� a correlated spin swap from
�↑↓�→ �↓↑�, where the first and second positions refer to the
left and right dots, respectively, and �ii� single qubit opera-
tions with an external pulsed magnetic field. The second op-
eration has to be done within the time of one spin swap.
Therefore, the time for one XOR gate is determined by the
correlated spin swap time T.

The MI and electron spin swap times are given
by �m

−1, and �e
−1 modulus ��, assuming that the gate

voltage and therewith exchange coupling is controlled
by a square pulse.4 Here, �m
� j j� is the coupling
coefficient between the two MIs. As a result,
Ne=�e / �2�Ae�, Nm= �JemU / �2��� / �2�Am�, where U
=�+�R� 1��−�R� 1��+�R� 2��−�R� 2� and R� 1, R� 2 are MI coordinates.
The ratio of the maximum number of elementary operations
�per coherence time� is given by Nm /Ne= ��m /�e���m /�e�,
which finally gives

Nm

Ne
=

Jem

�e

U

2�

Ae

Am
. �14�

In Eq. �14�, Nm /Ne�1 /�e. Unlike the other parameters in
Eq. �14�, �e decays to zero very rapidly by increasing the
external magnetic field and interdot energy barrier that low-
ers the interdot coupling. Therefore one expects to observe
decay in performance of the electron spin coded qubit due to
variations in B and Vg. Unlike the electrons, MIs show a
robust increase in their quantum operation performance. To
gain the optimum performance of MIs over electrons we em-
ploy a numerical calculation based on exact diagonalization
of Eq. �1� from which the input parameters for Eq. �14� are
obtained.15 The DQD is chosen to be double Gaussian along
the axis and parabolic in the perpendicular direction and each
MI is centered at one of the QDs. We perform our calculation
for three different materials, Gd:PbTe, Fe:CdSe, and Fe:ZnSe
where they show �m /�e�300,20,2, respectively, at
Vg=154 meV and B=0. The values for Jem are adopted from
Ref. 17. In this range of parameters the coupling between
MIs and nuclear spins �� j,l� is optimized to be weak to maxi-
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mize �m /�e. However with decreasing � j,l, the coupling be-
tween two MIs ��m� lowers and as a result the time required
for fundamental gate operations becomes longer. Thus, the
gain in coherence time ��m /�e� is offset by a loss in gate
operation times ��e /�m�. To maximize Nm /Ne we search for
a range of parameters that allows simultaneous maximization
of �m /�e and �m /�e.

In Fig. 2 we show the results for Fe:ZnSe. Nm and Ne
normalized to 2�Ae are plotted as a function of parabolic
confining strength �0 for various values of the gate voltage

Vg, and the external magnetic field B �inset�. Within numeri-
cal parameters considered in this calculation we found
Ae�Am. We observe that Nm /Ne increases with increasing B,
Vg �interdot energy barrier� and �0 �tighter confinement�.
Within the parameter range considered here, a maximum per-
formance increase of about 3 orders of magnitude can be
achieved over the electron spin coded qubit. It is important to
mention that even higher increases in Nm /Ne might be
achievable. The maximum B and Vg values used for our op-
timization had to be limited to the range of validity of our
two-level model. For increasing values of B and Vg the sys-
tem approaches the singlet triplet transition point at which
�e→0 and Nm /Ne�1 /�e→�. In this limit our approxima-
tion based on the two-level model fails and a more exact
analysis becomes necessary. This will be studied in more
detail in a follow-up work. Further, the smallest realizable
quantum dot size is around 5 nm corresponding to the maxi-
mum �0 in Fig. 2. However, an extrapolation of the numeri-
cal results to the atomic scale indicates performances gains
Nm /Ne of more than five orders of magnitude. In this limit,
our system becomes comparable to Kane’s proposal,8 which
demonstrates its favorable performance properties. The ad-
vantage of our system is that a compromise can be found
between optimizing performance and accommodating tech-
nological limitations.

In conclusion the qubit system investigated here opens the
possibility for noise and performance optimization. We have
found that a combination of active and passive optimization
is necessary to obtain appreciable improvements; our analy-
sis of the hybrid MI/electron qubit predicts a performance
gain of at least 3 orders of magnitude over electron spin
coded qubits in the limit of small interdot coupling.
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